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Introduction 

It is well known that the flow of real fluids may in some circum- 

stances approximate the flow described by the theoretical equations for 

a non-viscous incompressible fluid. In other circumstances the steady 

flow solution of the Navier-Stokes equations for a viscous imcompressible 

fluid provides a reasonably accurate description of the real flow. But 

often and perhaps more frequently the real flow exhibits random velocity 

fluctuations about the mean values which are a distinguishing feature of 

what we call turbulent motion. When the flow varies With time but the 

randomness is absent we regard the flow as non-turbulent. A further 

characteristic of turbulent motion is the more rapid diffusion of momen- 

tum, heat, and matter a s  compared with the molecular diffusion present 

in laminar flow. 

We may recognize laminar and turbulent flow in different parts 

of one and the same flow field. In such cases we usually find laminar 

flow over the upstream parts of the fluid boundaries, including the surf- 

aces of objects immersed in the flow, with a region of transition to 
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turbulent flow downstream. As the flow speed is increased the tran- 

sition region moves forward. We may observe the speeds at which 

transition of the flow occurs fo r  various fixed probe positions a s  the 

speed is increased, o r  the positions at which transition occurs as the 

probe is moved downstream at various fixed speeds. 

At high Reynolds numbers the effects of viscosity are con- 

fined to a relatively thin layer in the neighborhood of the boundary, 

the so-called boundary layer. The flow in this layer may be laminar 

or  turbulent as noted by Prandtl more than 40 years ago in the early 

development of his boundary layer theory''). Since then comprehen- 

sive theoretical and experimental studies have been made of the flow 

in the boundary layer and of the transition from laminar to turbulent 

flow. 

In this paper we shall discuss some aspects of boundary layer 

transition. We shall consider for the most part the simplest possible 

case, transition in the boundary layer of a smooth thin flat plate in a 

stream of uniform velocity and static pressure, the plate being parallel 

to the flow with its leading edge normal to the flow. 

When transition occurs, the velocity near the plate, which at 

a suitable fixed distance from the plate is slowly falling with increasing 

distance from the leading edge, begins to increase rapidly with further 

increase in distance downstream. The location of the minimum velocity 

is commonly defined as the beginning of the transition region or  more 
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simply the transition point. The observed values of the transition 

Reynolds number Uo q/+ found from the free stream velocity 

Uo, the distance 

and the kinematic viscosity of the fluid vary from 90,000 to about 

2,800,000 f o r  the smooth thin flat plate without pressure gradient 

when immersed in various wind tunnel air streams. 

xt of the transition point from the leading edge, 

The principal factor in this rather large variation in differ- 

ent air streams under nominally identical conditions was soon traced 

to variations in the residual turbulence present in the air stream. In 

fact a relationship has been demonstrated(2) between the transition 

Reynolds number Ret and the intensity of the turbulence defined a s  

the root mean square value of the fluctuations of the velocity of the 

free stream with time about i ts  mean value. This relationship is 

shown in Fig. 1. It will be noted that the three components of the 

turbulent fluctuations have been arranged in a specified way. 

The principal theoretical attack on the problem of transition 

studies the behavior of the flow with respect to small disturbances to 

determine whether the disturbances decrease o r  increase with time. 

Analyses of the variation of the energy of the disturbances with time 

have not led to definitive results. Calculation of the development in 

time of small disturbances which satisfy the Navier-Stokes equations 

of motion does show amplification of disturbances whose wave lengths 

lie within certain limits, provided the Reynolds number of the boundary 
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layer exceeds a definite critical value dependent on the distribution 

of mean velocity. In the earlier experiments such amplified disturb- 

ances were not observed. Transition appeared to depend solely on 

the amplitude of the disturbances initially present in the free stream 

flow. We shall review the attempts to compute the response of the 

boundary layer flow to external disturbances and return later to the 

question of the stability of laminar flow. 

Behavior of Laminar Boundary Layer in Presence of Disturbances 

A first  crude attempt to compute the effect of external dis- 

turbances was made by myself in 1936(3). It was assumed that the 

free stream flow consisted of a constant velocity component Uo 

and a sinusoidal space variation along the boundary layer of amplitude 

2 percent of the mean velocity, i. e.  

- -  U 
UO 

- I + 0.02 sin (z* -4  

where h is the wave length of the disturbance and ole its phase 

relative to the leading edge of the plate. A modified Pohlhausen 

method was used to compute the boundary layer flow. Computations 

were made for ten values of o(. Fig. 2 shows the results f o r  two 

values of ec. Each computation referred to a steady flow independent 

of time, but the ensemble was considered as an approximation to a 

traveling wave of small wave velocity. The essential features of the 

results are as follows: 
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1. The mean speed is practically unaffected by this simplified 

turbulence of the external flow. 

2. There are speed variations within the boundary layer which 

are much larger than those in the external flow. Their 

amplitude increases with distance from the leading 

edge of the plate. 

3. Separation of the flow occurs at a distance from the leading 

edge of 3.4 to 3.9 wave lengths depending on the phase 

angle & . 
forth within these limits during the fluctuation. 

4. The separation point is a function of the amplitude of the 

The point of separation moves back and 

disturbance . 
The use of the Pohlhausen method came under some criticism 

by Prandtl because of its limitations in flows With adverse pressure 

gradients and in 194tJ4) Qlllck and Schrdder published the results of 

an improved computation. A method due to Schrgder was used. The 

sinusoidal variation was  assumed to begin after a certain distance 

Lo from the leading edge f o r  which the velocity was constant. The 

amplitude was chosen as 1/2 percent of the mean velocity and the wave 

length 

fourth wave and it was concluded that every undulation, even the weak- 

est, finally leads to reversed flow if only the calculation is carried 

sufficiently far. The boundary layer proves to be extremely sensitive 

as 0.072 Lo. For this case separation occurred in the 
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to small periodical oscillations in pressure, responding with large 

variations in i ts  displacement thickness. Fig. 3 portrays the stream- 

lines f o r  this case. 

An investigation of the influence of small waviness of the wall 

published by GErtler in 1947(5) gave similar results. The waviness of 

the wall  has a very large effect on the boundary layer flow. If the flow 

continues over a sufficient number of wave lengths, separation of the 

boundary layer occurs. 

These computations lend support to a view expressed by 

myself in 1931(6) that transition is due to the occurrence of intermit- 

tent flow separation. Separation yields free shear layers in the fluid 

which are unstable and roll-up into small-scale vortices which spread 

throughout the fluid. Taylor in  1938(7) derived a formula fo r  the func- 

tional relation between the transition Reynolds number and the intensity 

and scale of the free stream turbulence based on the assumption that 

transition resulted from momentary separation produced by the pres- 

sure gradients associated with the turbulence. This relation satisfac- 

torily represents the available experimental data fo r  turbulence levels 

of the f ree  stream exceeding 0 . 2  percent of the mean velocity. 

There is ample opportunity for some competent mathematician 

to make more satisfying computations. The boundary layer equations 

should be solved fo r  more realistic boundary conditions, for example 

f o r  the case in which 



- -  U - I +  a( sin ( x - c t )  
UO a 

utilizing the equations f o r  unsteady flow. In actual flows the external. 

flow consists of a mean flow on which is superposed isotropic turbu- 

lence involving a stochastic process. The amplitude of the superposed 

turbulence could be assumed very small. 

Stability of Laminar Flow 

We return now to the small disturbance theory of the stability 

of laminar boundary layer flow. The predicted amplified disturbances 

were f i rs t  observed by Schubauer and Skramstad in 1940(8) in an air 

stream for which the turbulence level was only a few hundredths of 

one percent of the mean speed. 

It is assumed that a two-dimensional. boundary layer is sub- 

jected to a two-dimensional disturbance in the form of a traveling 

wave moving in the direction of the mean flow. The disturbance is 

assumed two-dimensional in view of Squire's ~ t a t e m e n t ' ~ )  that a 

three -dimensional disturbance* of a two-dimensional flow becomes 

unstable at a higher Reynolds number than the two-dimensional dis- 

turbance. The stream function of the disturbance may be witten 

* Actually Squire's so-called three-dimensional disturbance was a 
two-dimensional wave traveling at an angle to the stream direc- 
tion, i. e. the three components of the disturbance velocity were 
periodic in the time coordinate and in the two space coordinates 
parallel to the plate. 
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in the form y (x, y) = J(y)e i #(x-ct) where d is real but 

c is complex and equal to C r  + ici . cr is the phase velocity, 

is 2 divided by the wave length, and C i  is the amplifica- 

tion o r  damping factor depending on its sign. Assuming )c, to be 

small, introducing non-dimensional variables, and substituting in 

the Navier-Stokes equation, there results the so-called disturbance 

differential equation: 

where RE is the Reynolds number. The boundary conditions are 
1 1  

a t y = o  : u = v  = o : + =  0, 9' = o 

a t y = a :  u = v  = o  : 9 = 0, # = o 
1 1 

The stability problem is thus reduced to an eigen-value problem. 

Given the mean flow U , the Reynolds number Re, and the wave 

length /t = the equation yields a solution only for certain d 
values of C y  and C i  . 
f o r d  and C r  as functions of Re for various values of C i  . 
The curves for C i  = o 

damping from regions of amplification. The results may also be 

expressed in terms of the frequency which equals the product of wave 

length byphase velocity. Fig. 4 shows the results compared with 

measurements by Schubauer and Skramstad(8) of the behavior of 

artificially excited waves. 

The possible values can be plotted on two graphs 

are the neutral curves separating regions of 
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I shall not attempt to review the mathematical aspects of the 

solution of the disturbance equation. Schlichting's book on Boundary 

Layer Theory outlines the methods used and gives references to more 

detailed studies of the mathematical aspects by Tollmien('') and by 

Holstein (11) . 

When the existing dis turbace is a composite one, the selec- 

tive amplification isolates a wave containing a narrow band of frequen- 

cies in  the neighborhood of the frequency most highly amplified. This 

has been observed in natural transition. 

The initial disturbance spectrum consists of free stream tur- 

bulence, sound waves, and disturbances from surface roughness. For 

turbulence and distributed surface roughness the spectrum is constant 

only in a statistical sense. We have a stochastic process with a certain 

degree of randomness. Sound waves give noticeable effects only when 

the turbulence level is less than a few hundredths of one percent and the 

surface roughness is much less than the boundary layer thickness, say 

less than 0 . 1  the displacement thickness. 0 

The laminar boundary layer is unstable only in the sense that 

the initial disturbances within a certain frequency band grow with increas- 

ing distance downstream. If the initial disturbance is reduced, the bound- 

ary layer appears more stable. But since the boundary layer is so  

extremely sensitive to external disturbances, we probably cannot avoid 

instability at sufficiently high Reynolds numbers, at least for the case of 

incompressible flow without heat transfer. The case of compressible 

flow with cooling is discussed later. 
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Oriqin of Turbulence 

The amplified disturbances do not constitute turbulence and 

the breakdown of laminar flow does not constitute transition to turbu- 

lence. There are many examples of the breakdown of laminar flow into 

a flow varying periodically with the time, often with regular vortex pat- 

terns. Examples which have been treated theoretically and observed 

experimentally are (1) the Ka!rmdn vortex street behind a cylinder; 

(2) the Taylor three-dimensional vortex cells between two concentric 

rotating cylinders; and (3) the GErtler vortices near a concave surface. 

These periodic patterns a re  well defined and essentially laminar in 

character at Reynolds numbers which do not exceed too greatly that for 

instability of the steady laminar flow. 

Turbulence is characterized by random velocity fluctuations 

at a point and by greatly increased diffusion of momentum, matter and 

heat. Transition has not occurred until turbulence as thus defined is 

present. 

The riddle of the origin of turbulence is one which has engaged 

the attention of many throughout past decades. The fact that vorticity is 

generated through the action of viscosity in the region near solid boundar- 

ies, i. e. in boundary layers is now fairly clear. St. Venant was the 

first to note that vorticity cannot be generated in the interior of a viscous 

incompressible fluid, subject to conservative extraneous forces, but is 

(13) has necessarily diffused inward from the boundaries(12). Truesdell 

4 

given us a comprehensive treatment of the kinematics of vorticity. 
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Betz(14) has described some of the difficulties in devising 

The time a conceptual model of the formation of discrete vortices. 

required to produce a given circulation is inversely proportional to the 

viscosity and directly proportional to the square of the diameter of the 

vortex core. The time is very short for vortex cores of small diameter. 

However the energy of the flow increases without limit as the diameter 

approaches zero. Betz concludes that discrete vortices are  formed by 

the rolling up of thin vortex sheets. Such sheets can be produced in flows 

with very small viscosity. When a boundary layer separates from the 

surface in a region of adverse pressure gradient i t  becomes a thin vortex 

layer in the free fluid. 

Helmholtz(15) and Rayleigh'l') discussed the instability of 

surfaces of discontinuity in an incompressible frictionless fluid and 

showed that any small disturbance increases in amplitude with time. 

Rosenhead attempted to follow the motion in  its later stages and 

showed the rolling up of the layer and concentration of the vorticity at 

discrete points. The wave length which finally dominates, i. e .  the 

vortex spacing, can only be determined by a stability computation which 

includes the effects of viscosity. 

(17) 

Experimental attack on the problem of the origin of turbulence 

is yielding suggestive results which should aid in the development of a n  

adequate theory. It has been known since 1936(3) that transition to 

turbulence in a boundary layer occurs suddenly just as Reynolds observed 
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in pipe flow with a filament of dye. The turbulent bursts occur ran- 

domly and infrequently near the upstream limit of their occurrence 

and become more frequent and of longer duration further downstream 

until finally the flow is always turbulent. These observations were 

interpreted a s  a to and f ro  motion of the transition point. 

In 1951(18) Emmons proposed, as a result of observations on 

a thin sheet of water flowing down an inclined plate, that turbulence 

originated in spots which grew in size as they moved downstream. 

Using a technique developed by Mitchner(l'), Schubauer and Klebanoff (20) 

have studied the behavior of turbulent spots induced by a spark dis- 

charge. These show a characteristic oscillograph signature when 

they sweep over a hot-wire probe and the same signature appears in 

records of natural transition. There seems little doubt that transition 

to turbulence does in fact originate in  many local regions which grow 

in size until they merge as the turbulent fluid moves downstream. 

The observed intermittency is due to the passage of such spots past 

the probe. 

To study the detailed phenomena more systematically Schubauer 

and Klebanoff returned to the technique by which they had confirmed 

the stability theory. Lamlnar boundary layer oscillations within the 

amplified range of frequency were induced by a vibrating ribbon whose 

amplitude could be increased with time s o  that successive stages of the 

instability occurred in aequence at a fixed probe position. This work 
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is still in progress but many interesting results have been obtained. 

As the amplitude of the exciting ribbon is increased, the amplitude 

of the nearly sinusoidal oscillations increases and the wave form be- 

comes distorted. Unexpectedly however a three-dimensional disturb. 

ance is superposed, made apparent (Fig' 5, in a variation of the 

amplitude of the two-dimensional waves along their length. 

These observations suggest a further theoretical study of the 

stability of the boundary layer for three-dimensional disturbames . 
Although Squire(') stated that the two-dimensional instability appears 

at a lower Reynolds number, the margin may be very small. The 

experiments also suggest a direct experimental study utilizing a 

localized "point" source in place of the two-dimensional ribbon. 

As the amplitude of the ribbon was further increased, second- 

ary disturbances appeared in the crests and troughs of the two- 

dimensional waves (Fig. '). At the transverse location of minimum 

amplitude regular high frequency ripples appeared on the somewhat 

flattened wave crests (i. e.  high velocity part of fhe cycle) with the 

troughs remaining smooth (Fig. 'I. At the transverse location of 

maximum amplitude large irregular high frequency disturbances, 

perhaps to be interpreted as turbulence, appeared in the troughs 

while the flattened crests showed no disturbance (Fig. 5) 

The latter observation is consistent with the intermittent sep- 

aration theory of the origin of turbulence. The first  observations 
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suggested the generation of three-dimensional vortices of the GGrtler 

type in the region of concave flow curvature as proposed by Gsrtler 

It is hoped that further work will clarify the physical interpretation of 

these secondary phenomena. A theoretical study of the stability for a 

boundary layer with a velocity distribution corresponding to the ampli- 

fied Tollmien-Schlichting waves would be very helpful. 

(21) . 

In an actual flow the peak amplitudes would probably not be s o  

uniformly distributed a s  found f o r  the carefully controlled experiments 

with artificially excited disturbances. 

would originate at points randomly distributed. The pattern would 

probably resemble that of the white caps in the open ocean where we 

are observing a complex wave system with peak amplitudes randomly 

Therefore the turbulent spots 

distributed. However the key process in the origin of turbulence 

appears to be associated with a rather localized three-dimensional 

disturbance of the boundary layer and theoretical attack should be 

concentrated on this process. 

Spread of Turbulence 

Schubauer and Klebanoff(20) have studied the growth of artifi- 

cially generated turbulent spots. The spots were produced by a spark 

discharge through the boundary layer at a point where the boundary 

layer Reynolds number was below the transition Reynolds number but 

above the minimum critical Reynolds number. Specif ically the mini- 

mum Reyndds number was 450, the natural transition Reynolds number 
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about 2900, and the Reynolds number at the spot probe was about 2100, 

all based on the bsplacement thickness. 

spot, shown in Fig. 7, is approximately conical in plan and thus char- 

acteristic of a moving source which is propagating a flow disturbance 

in all directions at a speed less than the speed of the source. This 

speed of propagation of transition at the boundary may be computed 

from the speeds at the leading and trailing edges of the spot, from the 

vertex angle, and from the angle subtended at the origin. 

values a re  in approximate agreement ranging from 0.19 to 0.22 times 

the mean flow velocity. This speed is considerably less than the speed 

The shape of the growing 

The three 

of the most highly amplified Tollmien-Schlichting wave s which lies 

within the limits 0. 27 to 0.35 times the mean flow velocity at a 

Reynolds number of 2100. 

The speed of spread of turbulence can also be computed from 

the angle of the turbulent wedge behind a single three-dimensional 

roughness element. Turbulent wedge angles observed under various 

conditions vary from 8.5" to 11" corresponding to speeds of 0.15 to 

0.19 times the mean flow velocity. 

I believe that the growth of the turbulent spot in a laminar 

boundary layer is the effect of the flow disturbances surrounding 

the turbulent spot in breaking down the adjacent laminar flow. From 

the results of measurements of the effect of external turbulence on 

transition, it is computed that a disturbance amounting to 0.35 percent 
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. 

of the mean speed would produce transition at a Reynolds number of 

2100. The finite speed must be associated with the finite amplifica- 

tion rate of the disturbances. The theoretical computation of this 

speed of propagation of transition is a worthy task for some mathe- 

matician. 

If tKz speculation is correct, an artificially generated spot 

should not grow at a location where the boundary layer Reynolds 

number is less than the minimum critical Reynolds number. 

Schubauer found that the spot grew at a slow rate until the boundary 

layer Reynolds number exceeded 450 and then grew at a much faster 

rate. 

(Note: The remainder of this paper is a translation of sections of 
a paper, "Neuere Untersuchungen der Frage des Umschlages ' I ,  

presented by the author at the Annual Meeting of the Deutsche 
Versuchsanstalt fir Luftfahrt, Munich, September 30, 1955. 
A brief abstract of this material was given in the o ra l  presentation 
of the University of Maryland lecture. ) 

Theory of the Stability of Compressible Boundary Layer Flow 

In 1946 and 1947 Lees and Lin(227 23) extended the Tollmien- 

Schlichting theory to a compressible laminar boundary layer. The 

effect of increasing Mach number on the stability limit on a flat plate 

with no heat transfer is a slow decrease in the critical Reynolds num- 

ber. Heating the body above the recovery temperature (that attained 

by the plate without heat transfer under equilibrium conditions) 

reduces the critical Reynolds number, whereas cooling the body 
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decreases it. A most important conclusion was that the boundary 

layer could be completely stabilized by sufficient cooling of the body. 

These computations have given rise to much controversy as to their 

accuracy and the validity of the assumptions. 

(24) Dunn and Lin have recently published a more complete 

theory, removing some of the earlier limitations and modifying some 

of the general conclusions of the earlier treatment. They find that at 

a Mach number between 1 and 2 three-dimensional disturbances begin 

to play the leading role in producing transition. At supersonic Mach 

numbers the boundary layer can never be completely stabilized by 

cooling with respect to all three-dimensional disturbances. However 

in many cases surface cooling is still a very effective means of 

stabilizing the boundary layer. According to their computations 

the critical wall to free s t r e m  temperature ratio required for 

complete stability with respect to two-dimensional disturbances 

is 1 . 6  at a Mach number of 3; f o r  a Mach number of 4 the critical 

temperature ratio is 1 .7  and the ratio falls to zero at a Mach num- 

ber of 7. 5. The critical temperature ratio for complete stability 

against three-dimensional disturbances corresponding to oblique 

waves varies with the direction of propagation. At a Mach number 

of 4 the values for angles of 0" to 74" to the flow direction vary 

between 1.47 and 1.7 and f a l l  to zero at angles of 75" o r  more. 

There is still some uncertainty in these results since the computa- 

tions have been restricted to small wave numbers. 
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Experimental Studies of Stabilization by Cooling 

Within the last five years there have been several attempts to 

demonstrate experimentally the complete stabilization by cooling 

which was predicted by the earlier theoretical work, and research 

on this question is very active at the NACA and elsewhere in the U.S. 

The experimental data available show clearly that heat transfer 

from the body to the airstream decreases the transition Reynolds num- 

ber whereas heat flow from the airstream to the body increases the 

transition Reynolds number. The magnitude of the effects increases 

with increase in transition Reynolds number of the insulated body, 

i . e .  with decrease in air stream turbulence and surface roughness 

and with body shapes giving favorable pressure distribution. 

Fig. 8 shows a sampling of the experimental data plotted in 

terms of the observed transition Reynolds number as function of the 

ratio of the difference between the wall temperature Tw and the 

recovery temperature Tr to the stagnation temperature To. The 

data in the literature which have been omitted from Fig. 8 relate 

mainly to the effects of heating or to experiments on artificially 

roughened bodies. The figure includes data taken at Mach numbers 

1.61, 2.40, 2.87, and 3.12 on the RM-10 body of revolution, flat 

plate , cone - cylinder and paraboloid - c ylinde r , respectively . 
Czarnecki and Sin~la i r ( ’~)  made measurements on a parabolic 

body of revolution (RM-10) at a Mach number of 1.61 in the NACA 
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Langley 4-foot wind tunnel. These experiments gave the highest 

transition Reynolds number fo r  the insulated body f o r  any of the 

available measurements, the Reynolds number for transition at 

the base being 11.5 million. These experiments show the largest 

effects of heating and cooling. Heating to a value of - of 
TO 

W 
T 

0.3 reduced the transition Reynolds number from 11. 5 to 3 million; 

cooling to a Tw - Tr of -0.15 increased i t  from 11.5 to 28.5 
TO 

million. Roughening the surface greatly reduced the sensitivity to 

heat transfer effects. Cellophane tape on the body at  3 and 25 per- 

cent of the body length reduced the value for the insulated body from 

11.5 to 5 and 7.5 million respectively, and these values could not be 

increased by cooling the roughened body. 

Higgins and Pappas(26) measured the effects of heating a flat 

plate at a Mach number of 2.40 in the NACA Ames 6-inch heat trans- 

fer tunnel in which transition occurred on the insulated plate at a 

Reynolds number of 1.25 million. Heating to a wall temperature 

200" F above the recovery temperature reduced the transition Reynolds 

number to 600,000. Ebe~-( '~)  measured transition on a cone-cylinder 

model, the cone having a total vertex angle of 40", in one of the NOL 

wind tunnels at a Mach number of 2.87. Heating to a wall temperature 

125°F greater than the recovery temperature decreased the transition 

Reynolds number from 300,000 to 160, 000 whereas cooling by 50°F 

increased it to 450,000. 
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Jack and Diaconis(28) made measurements on two bodies of 

revolution at a Mach number of 3.12 in the NACA Lewis one-foot 

wind tunnel in which the stagnation pressure could be varied from 

8 to 52 lbs/in2 and the stagnation temperature from 50" to 170°F. 

The ratio of wall temperature to free 

varied from 0 .7  to 4.4, the value f o r  

mately 2.7. For the cone-cylinder, 

stream 

no heat 

heating 

temperature could be 

transfer being approxi - 
TW - Tr  

to avalue of 

of .O.  53 decreased the transition Reynolds number from 2 million to 

0.86 million; cooling to -0.45 increased it to 10.6 million. For 

the paraboloid-cylinder the transition Reynolds numbers were 

approximately twice as great. 

The basic parameter used in the stability computations is the 

ratio of the wall  temperature Tw to the free stream static tempera- 

ture T, . The method of plotting of Fig. 8 is more convenient for 

most purposes since the heat transfer direction is evident. It can be 

Tw - Tr  - TW 

and T- is givenby 

- r(1-R) - R where r 

shown that the relation between 

the linear relation 

T O  

T ~ -  T r = R -  TW 

TO Too 

is the recovery factor (0.851 fo r  the laminar boundary layer) and R 

is the ratio 3 which for isentropic flow is simply l/(l + 0.2 M2). 

Using this relationship, the Dunn and Lin theoretical values of 
Too 

T W  

Tow 
- 

I 
I 

for complete stabilization against two-dimensional disturbances may 
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II 
I 

I 
I 

be converted to values of Tw - Tr . The resultingvalues a re  
TO 

plotted against Mach number in Fig. 9. 

The curves of Fig. 8 f o r  the measurements of Czarnecki 

and Sinclair (curve A) and of Jack and Diaconis (curves B a d  C )  

suggest the presence of vertical asymptotes at sufficiently low 

Tw - Tr 

TO 
values of -- . Approximate values a re  indicated in Ficj. 9. 

Since the Reynolds number attainable in any experiment is always 

finite, i t  will never be possible to demonstrate complete stabiliza- 

tion. However, a large increase in transition Reynolds number on 

smooth fair bodies of revolution is obtained by reducing the wall 

temperature by cooling to values of the order of those predicted 

by the theory. 

The Effect of Mach Number on Transition on 

Bodies Without Heat Transfer 

The stability theory indicates a slow reduction of the critical 

R,eynolds number with increasing Mach number for a body without 

heat transfer. The experimental situation is quite confused. Wind 

tunnel results generally but not always show a decrease as predicted, 

but data obtained by firing models through the air shows an increase 

of critical Reynolds number with Mach number. 

The wind tunnel data are greatly affected by wind tunnel turbu- 

lence, which may vary with Mach number, stagnation pressure, 
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compressor interconnections, etc. Measurements of transition have 

been made on a cone of IO" total vertex angle in numerous NACA wind 

tunnels 

the variation with Mach number is in some cases a decrease and in 

others an increase with increasing Mach number. Turbulence meas- 

urements were not available but in the NACA Lewis one-foot tunnel 

the transition Reynolds number has been increased from 700,000 to 

1 . 3  million and then to about 4 million by successive modifications 

to reduce the turbulence level. These values are not directly com- 

parable with those for a flat plate, the equivalent flat-plate Reynolds 

numbers being equal to one-third of the x-Reynolds numbers for the 

cone. 

(29) . The values obtained vary from 400,000 to 7 million and 

B r i n i ~ h ( ~ O )  made measurements of transition on the outer 

surface of a hollow cylinder with sharp leading edge in the NACA Lewis 

one-foot wind tunnel at a constant Mach number of 3.12 but with the 

Reynolds number varied by varying the stagnation pressure. The 

transition Reynolds number increased from 1 . 5  to 4 million as the 

pressure was increased from 6 to 52 lbs/in2. Brinich makes the 

interesting suggestion that in his experiments transition was con- 

trolled b y  air stream turbulence rather than by development of 

instability. The controlling parameter is then the Taylor turbulence 

parameter involving the turbulence level and the ratio of the scale of 

the turbulence to the boundary layer thickness. Assuming a fixed 
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turbulence level and scale, the boundary layer thickness decreases 

as the density increases and hence the ratio of boundary layer thick- 

ness to the scale of the turbulence decreases. Thus the turbulence 

of fixed scale has less effect at higher pressures in reducing the 

transition Reynolds number. On this view there would be both a 

Mach number effect and a density effect since the thickness increases 

with increasing Mach number. In a wind tunnel of constant stagnation 

pressure, increasing Mach numbers a re  associated with reduced 

density s o  that the two effects a re  additive. 

Lange, Gieseler, and Lee (31) observed a decrease in transi- 

tion Reynolds number fo r  a 5" cone from 3.4 million to 1 .0  million in 

passing from a Mach number of 1 .9  to 4.2 and from 3 million to 1 .0  

million for a hollow cylinder. Coles (32) found in measurements on a 

plate in the JPL 20-inch wind tunnel a decrease from 2.25 million to 

1.10 million between Mach numbers 2 and 3.6 but a rise to 1 . 2  million 

from 3.6 to 4.5. 

Because of the sensitivity of the transition position to heat 

transfer, measurements of the effect of Mach number must be made 

with great care to avoid heat transfer effects. Thus measurements 

on models in flight are  ordinarily made in s o  short a time that the 

model does not have time to heat up to the recovery temperature. 

The conditions are  therefore those of a cooled body with the wall 

temperature substantially equal to the free stream static temperature. 
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Since the stagnation temperature increases with Mach number, the 

wall  temperature ratio decreases and hence the transition Reynolds 

number increases with Mach number. 

Concludinq Remarks 

A review has been given of some of the current work in the 

United States on the transition problem with special attention given 

to the fundamental studies of the origin of turbulence in incompres- 

sible boundary layer flow and to the stabilization of the compressible 

boundary layer by cooling. 

Persistent attack on the fundamentals of the transition process 

by theoretical and experimental workers in many countries is yielding 

a more complete understanding of the origin of turbulence. Although 

much remains to be done, one has a feeling that we a re  now on the 

right track and that progress will be more rapid. 

The study of transition in boundary layers in supersonic flow 

is making considerable progress. The difficulty of making turbulence 

measurements in supersonic wind tunnels is a definite handicap to the 

interpretation of experimental data. Tie theory of the stability of 

compressible boundary layer flow needs much more critical examina- 

tion. Basic studies a re  notably lacking although attempts are  being 

made by one group in the U. S. to repeat the classic Schubauer- 

Skrams tad experiments in  supersonic flow. 
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The contributions of German scientists to this problem have 

been very great, and workers in other countries look forward with 

anticipation to the contributions of the DVL and other German aero- 

nautical research institutes in the future. 
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Fiqure Leqends 

Fig. 1. Transition Reynolds number on a smooth flat plate as a 
function of intensity of the free-stream turbulence. 

Fig. 2. Computed distribution of mean speed in the boundary layer 
of a plate fo r  the external flow 

U/Uo = 1 + 0.02 sin (2m/x- 4. 

The contours a re  contours of equal values of u/Uo. 
Separation begins at the points indicated by arrows. 

Fig. 3. Stream lines f o r  flow in the boundary layer of a plate sub- 
jected to periodically varying air speed beginning at 
distance Lo from the leading edge. 

fo r  x >Lo. 

Fig. 4. Comparison of theoretical and experimental values of fre- 
quencies of neutral Tollmien-Schlichting waves in boundary 
layer of a plate. 

Fig. 5. Variation of amplitude of Tollmien-Schlichting waves with 
z - coordinate (normal to flow dxection and parallel to 
leading edge of plate) and nature of secondary disturbances 
in regions of high and low amplitude. 

Fig. 6. Development of secondary oscillations prior to transition as 
amplitude of Tollmien-Schlichting waves is increased. 

Fig. 7 .  Growth of artificial turbulent spot in laminar boundary layer 
(from Reference 2 0 ) .  

Above -- Oscillograms of passage of spark-induced and 
natural-transition turbulent spots over hot-wire anemometer. 
Timing dots at intervals of 1/60 see. 

Below -- Plan and elevation views of spark-induced turbu- 
lent spot about 2.4 ft. downstream from origin. 
Pohlhausen thickness of laminar boundary layer. 
Uo = 30 ft/sec. 

6 is 
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Fig. 8. Effect of Heating and Cooling on Transition Reynolds Number. 

Tw = wall temperature, Tr = recovery temperature, 

To = stagnation temperature. 
Tw - Tr 

TO 
Fig. 9 .  Theoretical and experimental values of 

for  stabilization of compressible laminar boundary layer 
by cooling. 

Curve represents Dunn and Lin theoretical values of 
stabilization against two-dimension4 disturbances. 

Isolated points are  estimated experimental vertical 
asympto.tes from Fig. 8. 
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Fig.  1. Transit ion Reynolds' number  on a smooth flat plate as a 
function of intensity of the f r e e - s t r e a m  turbulence. 
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Fig. 3 .  St ream lines for  flow in the boundary layer  of a plate sub 
jected to  periodically varying air speed beginning at  
distance Lo f rom the leading edge. 

U / U o  I 1 + 0.005 sin (2fix/O. 072 Lo) 

for  x >  Lo. 
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Fig. 6 Development of secondary oscillations p r io r  to transit ion as 
amplitude of Tollmien-Schlichting waves is increased. 
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